8 research outputs found

    A low-power delta-sigma modulator ADC for sensor system applications

    Get PDF
    This paper discusses a third-order tri-level quantizer delta-sigma modulator analog-digital converter (ADC) for cascaded integrators with distributed feedback (CIFB) and cascaded integrators with distributed feedforward (CIFF) structure for sensor system applications. The signal transfer function (STF) and noise transfer function (NTF) discussed for poles and zeroes. Oversampling ratio (OSR) and different quantizer level presented for the modulator structure to trade-off the targeted bandwidth and complexity of increased quantizer level. NTF zero optimization technique also implemented to further reduce inband quantization noise by shaping at high frequency, which is later filtered by digital low-pass filter. Mismatch simulation results also performed for quantizer levels considering the performance degradation of the modulator. Operational amplifier (op-amp) for the front-end integrator optimized for minimum power consumption by considering low finite DC-gain, limited slew-rate, minimum required gain-bandwidth product (GBW). The proposed model simulations provided and discussed. Non-ideal effect for the proposed complete modulator CIFF structure for switched-capacitor circuit level implementation performed. The non-ideal parameters like thermal noise, sampling jitter, white noise, and switch nonlinearity also discussed. Modeling simulation results for CIFF structure with trilevel quantizer, shows that proposed modulator structure can achieve signal-to-noise ratio (SNR) of 133dB for sensor system bandwidth of 10kHz with OSR = 128

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    Brain tumor segmentation using 2D-UNET convolutional neural network

    No full text
    Gliomas are considered as the most aggressive and commonly found type among brain tumors. This leads to the shortage of lives of oncological patients. These tumors are mostly by magnetic resonance imaging (MRI) from which the segmentation becomes a big problem because of the large structural and spatial variability. In this study, we propose a 2D-UNET model based on convolutional neural networks (CNN). The model is trained, validated and tested on BRATS 2019 dataset. The average dice coefficient achieved is 0.9694

    Deep Learning Hybrid Techniques for Brain Tumor Segmentation

    No full text
    Medical images play an important role in medical diagnosis and treatment. Oncologists analyze images to determine the different characteristics of deadly diseases, plan the therapy, and observe the evolution of the disease. The objective of this paper is to propose a method for the detection of brain tumors. Brain tumors are identified from Magnetic Resonance (MR) images by performing suitable segmentation procedures. The latest technical literature concerning radiographic images of the brain shows that deep learning methods can be implemented to extract specific features of brain tumors, aiding clinical diagnosis. For this reason, most data scientists and AI researchers work on Machine Learning methods for designing automatic screening procedures. Indeed, an automated method would result in quicker segmentation findings, providing a robust output with respect to possible differences in data sources, mostly due to different procedures in data recording and storing, resulting in a more consistent identification of brain tumors. To improve the performance of the segmentation procedure, new architectures are proposed and tested in this paper. We propose deep neural networks for the detection of brain tumors, trained on the MRI scans of patients’ brains. The proposed architectures are based on convolutional neural networks and inception modules for brain tumor segmentation. A comparison of these proposed architectures with the baseline reference ones shows very interesting results. MI-Unet showed a performance increase in comparison to baseline Unet architecture by 7.5% in dice score, 23.91% insensitivity, and 7.09% in specificity. Depth-wise separable MI-Unet showed a performance increase by 10.83% in dice score, 2.97% in sensitivity, and 12.72% in specificity as compared to the baseline Unet architecture. Hybrid Unet architecture achieved performance improvement of 9.71% in dice score, 3.56% in sensitivity, and 12.6% in specificity. Whereas the depth-wise separable hybrid Unet architecture outperformed the baseline architecture by 15.45% in dice score, 20.56% in sensitivity, and 12.22% in specificity

    Detection and screening of COVID-19 through chest computed tomography radiographs using deep neural networks

    No full text
    In this chapter, we presented different method which can be used for the detection of COVID-19; in addition, we proposed a deep neural network for COVID-19 detection. Our work achieved promising accuracy

    Dental image enhancement network for early diagnosis of oral dental disease

    No full text
    Abstract Intelligent robotics and expert system applications in dentistry suffer from identification and detection problems due to the non-uniform brightness and low contrast in the captured images. Moreover, during the diagnostic process, exposure of sensitive facial parts to ionizing radiations (e.g., X-Rays) has several disadvantages and provides a limited angle for the view of vision. Capturing high-quality medical images with advanced digital devices is challenging, and processing these images distorts the contrast and visual quality. It curtails the performance of potential intelligent and expert systems and disincentives the early diagnosis of oral and dental diseases. The traditional enhancement methods are designed for specific conditions, and network-based methods rely on large-scale datasets with limited adaptability towards varying conditions. This paper proposed a novel and adaptive dental image enhancement strategy based on a small dataset and proposed a paired branch Denticle-Edification network (Ded-Net). The input dental images are decomposed into reflection and illumination in a multilayer Denticle network (De-Net). The subsequent enhancement operations are performed to remove the hidden degradation of reflection and illumination. The adaptive illumination consistency is maintained through the Edification network (Ed-Net). The network is regularized following the decomposition congruity of the input data and provides user-specific freedom of adaptability towards desired contrast levels. The experimental results demonstrate that the proposed method improves visibility and contrast and preserves the edges and boundaries of the low-contrast input images. It proves that the proposed method is suitable for intelligent and expert system applications for future dental imaging

    Artificial intelligence for thyroid nodule characterization: where are we standing?

    Get PDF
    Machine learning (ML) is an interdisciplinary sector in the subset of artificial intelligence (AI) that creates systems to set up logical connections using algorithms, and thus offers predictions for complex data analysis. In the present review, an up-to-date summary of the current state of the art regarding ML and AI implementation for thyroid nodule ultrasound characterization and cancer is provided, highlighting controversies over AI application as well as possible benefits of ML, such as, for example, training purposes. There is evidence that AI increases diagnostic accuracy and significantly limits inter-observer variability by using standardized mathematical algorithms. It could also be of aid in practice settings with limited sub-specialty expertise, offering a second opinion by means of radiomics and computer-assisted diagnosis. The introduction of AI represents a revolutionary event in thyroid nodule evaluation, but key issues for further implementation include integration with radiologist expertise, impact on workflow and efficiency, and performance monitoring.Machine learning (ML) is an interdisciplinary sector in the subset of artificial intelligence (AI) that creates systems to set up logical connections using algorithms, and thus offers predictions for complex data analysis. In the present review, an up-to-date summary of the current state of the art regarding ML and AI implementation for thyroid nodule ultrasound characterization and cancer is provided, highlighting controversies over AI application as well as possible benefits of ML, such as, for example, training purposes. There is evidence that AI increases diagnostic accuracy and significantly limits inter-observer variability by using standardized mathematical algorithms. It could also be of aid in practice settings with limited sub-specialty expertise, offering a second opinion by means of radiomics and computer-assisted diagnosis. The introduction of AI represents a revolutionary event in thyroid nodule evaluation, but key issues for further implementation include integration with radiologist expertise, impact on workflow and efficiency, and performance monitoring
    corecore